Towards ex-machina computations of transport and transformations in complex materials

Harnessing the accuracy of quantum mechanics to design complex materials requires a series of approximations to reach the desired length and time scales. I will describe our pursuit of the paradigm of “ex-machina” computations where data-driven approximations are automatically developed using machine learning algorithms and enable access to previously intractable systems. Using non-local charge density descriptors, we trained exchange and correlation density functionals that satisfy exact physical constraints and are competitive with existing semilocal and hybrid empirical functionals. Non-parametric regression methods also allow for learning of potential energy surfaces from expensive quantum calculations. To accelerate molecular dynamics calculations, we developed the Neural equivariant interatomic potential model (NequIP) based on tensor-valued symmetry-preserving layer architectures and used them to achieve state-of-the-art accuracy and training efficiency for simulating dynamics of molecules, liquids, heterogeneous catalysts, and ionic conductors. In order to enable autonomous selection of the training set for reactive systems, we developed the FLARE adaptive closed-loop algorithm that constructs accurate and uncertainty-aware Bayesian force fields on-the-fly from a molecular dynamics simulation, using Gaussian process regression. We demonstrate the performance of ML-accelerated MD simulations by studying 2D-to-3D transformations of layered quantum materials, shape memory effect in alloys and thermal transport in semiconductors. Finally, we develop dimensionality reduction techniques in order to automatically identify the reaction coordinates from dynamics simulations, that can be used to enhance sampling of rare transitions and to estimate reaction rates.
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